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INVESTIGATION OF SELFSIMILAR SOLUTIONS DESCRIBING FLOWS IN MIXING LAYERS* 

V.N. DIYESPEROV 

A complete investigation is made of the selfsimilar solutions of the 
boundary layer equation for the stream function with zero pressure gradient. 
They are a good description of the flow pattern in mixing layers since 
far from the separation point the latter is formed mainly under the effect 
of the boundary conditions and depends slightly on the initial conditions. 
The selfsimilar function @((I;;m)(t is the selfsimilar variable, and m 
the selfsimilarity parameter) satisfies a well-known third-order non-linear 
differential equation. It is successfully reduced to a first-order 
equation /l/, which enables us to investigate the behaviour of all the 
integral curves of (P(E;m) and, in particular, the examination of the 
question of the existence and uniqueness of the solutions of the two- and 
three-point problems that occur in the theory of displacement layers. 
For m=l these are classical problems /2-4/and the Blasius boundary 
layer problem and for m=2 the Goldstein problem for the wake /5/. 
The mixing layer encountered in the theory separations /6-ll/refers to 
the case m~(1,21. The case m=oo occurs in the theory of non-stationary 
separation /12/. 

From the viewpoint of the behaviour of the integral curves, the 
cases m>i and O<m<l differ substantially. For O(m<i their 
pattern is reformed in such a manner that solutions describing the flows 
in mixing layers with reverse velocities do not occur. Examples of the 
latter are given in /13, 14/. 

To a first approximation the flow in a mixing layer is described by the equation for the 
stream function 

For an incompressible fluid h = 1. For a gas h=8/RP (0) in the theory of local 
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separation, where R (0) is the value of the density at the point of separation and 6 is the 
Chapman constant in the linear dependence between the viscosity coefficient and the temperature. 
The (;e,y) system of coordinates is orthogonal. Its selection depends on the problem under 
consideration. 

The solutions of (1) are represented in the class of selfsimilar solutions in the form 

*=~-I/*~~~~(~), <= ~'/*~/~l/(m+l), m>O, ?b#=n/(mi- 1) 

A non-linear third-order differential equation is obtained to determine Q, (5) : 

_!!?fL@fa_@@*=~ (2) 

The flow in a mixing layer originating during the interaction of two streams, one of 
which (the upper) moves while the other is at rest, is described by (2) and the three boundary 
conditions 

UJ = bc’” + . . ..C.++m,b>O,m>O (3) 
@=O, g=o 14) 
ddDI<-,O, c--m (5) 

Problem (2)-(5) for m = 2 arises in both the theory of local separation from a smooth 
surface of an incompressible fluid (h = I)/7/, and in a supersonic stream /6, 91. Separation 
from the angular point of an incompressible fluid (h = 1) corresponds to m = ‘ia /8/, and a 
gas at sonic velocity m =“/a /ll/. For m = 1 the classical Chapman problem is obtained 

/4/. 
If 

dWid<z = 0, 5 = 0 (Q 
is required in place of conditions (5), then the two-point problem (2)-(4), and (6) will be a 
generalization of the problems /13/ (m = 3), /5/ (m = 2) on flows in wakes. 

If the requirement 

cD==bb,(--2;)“+..., 5+--w, b,<O (7) 

is imposed in place of conditions (5), then (2)-(4) and (7) will be a generalization of the 
problems /2/ for m = 1 and /lO/ for m = 2. They describe flows in mixing layers that 
separate two parallel streams moving to one side at different velocities. 

The order of Eq.(2) is reduced if we set 

f = &Dldg (~~1~~ = fdfl~, 8 Wdidy = f I(dfldE)2 + f#fldf=l, E = @} 

To determine j(E) a second-order differential equation is obtained with the boundaxy 
conditions 

fr+fv-v- 

f=--+e,--&- (5 - 4’ + 0 [(& - c)7, E - c < 0 

f = mblltn&W-1)/m + m(m ,*~(m-2) @/nag-a/m .+_ 

O(~-l-~‘~)+ D&q exp [- g@m+l)/m] + , , ., 

(8) 

(9) 

Pa 

Condition (10) corresponds to (3), and (9) corresponds to (5). It is required to find 
a doubly continuous differentiable solution f(E), gc~(c, oaf of (81 that satisfies conditions 
(9) and (10). It follows from the group properties of problem IS)-(10) that if its solution 
exists and is unique, then the quantities c and b are connected by the relationship k=m 
(-+(m+l)/mpP where k is some constant dependent on nt. 

The order of Eq.(8) is reduced, in turn, if the following substitution is made 

f = EeF (E), EdfldE = Y (11) 
We hence obtain 

FY+ --( Ya+7FY+6F~+Y++F) (12) 

-$-=5(Yww, +-[(Y+ZF)8+Y+~F]/F (13) 

~=~sF(Y42F), +-EaF(Y++,) 
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The right-hand side of (12) and the numerator in the second formula of (13) are second- 
order polynomials. We denote them, respectively, by P (F, Y) and R (PI Y). 

In order to construct a pattern of the behaviour of the triply continuous differentiable 
integral curves (D(c), as well as their corresponding integral curves f(E), it is necessary to 
study the nature of the singular points of (12) and to find what requirements the integral 
curves Y(F) must satisfy in order to satisfy the boundary conditions posed. Eq.(12) has 
three singular points 

AP,O), BOA-I), c(-*,o) 

in a finite part of the plane (P, Y) and three infinitely remote points. 
We connect each point of the plane (P,Y) to the centre of the unit hemisphere (located 

symmetrically about the plane and touching it at the origin) and we therefore set it in 
correspondence with a point on the hemisphere. Consequently, each infinitely remote singular 
point of (12) is stratified into two identical points on the equator that are symmetric 
relative to the centre. Thosein which the curves enter or depart for V<O, we 'denote by 
Q. E, 6 and for Y>O by Q., E,,G,. 

The hemisphere is then projected on to a circle (see Figs.l-3). The axis F=O and 
the integral curves can only pass through the singularities. 

The curve P(F,Y)= 0 for m#Yh is a hyperbola at whose points dY/dF = 0. 
branch PI passes throbgh the points C and B, and P, through A. 

For m>V6 its 
At points of the curve R (F, 

'p)= 0 which is a parabola and dissociates into the branches R1 and R,,cFfl@ vanishes (for 
na= 1 the parabola degenerates into two parallel lines Y= -2F.Y= -2P-ii). The branch R, 
always passes through the point B. The points on the curve Pi (or Ri will be denoted by 

V*'ppi). As F -0 and 1FI-rc-a for YPi (P) we will have 

dYPlz/dF=-l,-6, IFl+m 

=_i-!!!fLF_ 
h-i 

YP, ,rF’+.. ., F-.0 

YP,=-+F+eF’+..., F-0 

We denote the domains in which dY/dF<O by a= (F>O, P(P,Y)<O} and % = (F<O, Y >O, 
P (P, Y) <O). 

We will now study each singularity separately. 
The integral curves at the point A in a certain neighbourhood belong either to 8 or 9,. 

If (F,Y)Es-J then a non-denumerable set of integrable curves enters the point A along the 
critical direction Y=-(m f f)/mF. Let p(F) be one of them. Then as F-+0 the following 
asymptotic relations /15/, /16/ will hold: 

Y=p(F)+DoFX’exp[-IF-‘]+... (14) 

p (F) = (m - ‘;irn - 2, F2 + 0 (FJ) 

x0 = 
3m’+4m-5 

(m + 1)’ 
, Do= const 

If m = 1,2, then Y = -2F,Y = --Sl,F are exact solutions of (12). It is hence most 
convenient to take them as P(F). 

If F-+0 the following inequalities hold for the solution (14) 

YR. (F) c Y (F) < VP, (F) C 0, m > 1 

Y (F) <YR,(F) <VP,(F)< 0, 0 Cm < 1 

If (F, W E Q,, then a single integral curve that we call exceptional and denote by IA* 
enters A. 

The asymptotic behaviour of the solutions (14) for E>O corresponds to (10) in the 

plane (E,f). As 6+ +m we will have in the plane (c,@) 

@=b(E + W"- '"-;':"i- 2, (5 + la)-' + O[(E + ~~)++a)] + (15) 

DI(S+IA)~~~P[- &(t+&.#"+l]+... 

XI= - 
3ma+5m-4 

m+1 
; Dz, 1, is a cast 

The point B is a saddle point. A single holomorphic curve representable by the following 
expansion as F-+0 /17/ passes through it for any m>O 

T=-i+gbkFk; 
Bm-I 

bl=-- 
k=l 

(16) 
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bz = .+. [2bla + 761+ 61, bk = & [T i bn-lbk-n+l + 
n=2 

7h-1-j , k>3; YsYl(F>o), Y=‘i’l* (F,<o) 

The integral curves (9) correspond to it in the (E, f) plane for c#O, and in the (5, 0) 
plane as c6++w 

D = c - (sign c) exp t-c (5 + 1~)1 + . s . .) f > 0 
(1 

@ = C -+ (Sign C) exp 1-C (5 + ZB)] + . . ., f < 0; ZB = cm% 

For m > m, the singular point C is a focus. To a first approximation the integral 
curves in its neighbourhood behave thus: 

Here q is the polar angle in the (u, w) coordinate system. In the (E, f) plane we will 
have as ]E ]+oo 

f=-*P+[C lsin(vlnlElJ + Gcos(yInIEI]IElm+. . . 

3(m-4) 
0=m(m y= & 

and in the (c,(D) plane as 

Here and henceforth, 5 
subscript is a constant. 

5 + E, 

@= ~(~-6)“+[C2sin(~~nl5-5.1)+ 
C,cos(~In~5-~5c~)]~~5-~~~1-~f... 

with a subscript is a certain finite value of 6, while C with a 

7) 

Fig.1 Fig.2 
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Fig.3 

For O<m(m, the point C becomes a node. The behaviour of the integral curves in its 
neighbourhood had the form 

c=+(F+q)+ 
h(h- L$+ + ~)“‘*+ . . . . hl= const 

Y=-;(F+*)+..., )Cl,a= 
m+7*If= 

2(m+i) 

In the (6,@) plane this yields as 6-L 

Therefore, incidence of an integral curve at the point C means that the solution will 
behave as @ (f) - 0 I(5 -_W’l in the neighbourhood of a certain L. 

To investigate the infinitely remote point E (and E,), we make the following change of 
variables in (12) 

m--i 
ZF-----_+, y'=+ 

m 

Consequently we obtain the equation 

For 0 < t < r (CS) its solution can be represented in the form of a convergent series 
(r(CE) is the radius of convergence) /17/ 

Q= 2 d,tkla; d,=C, is arbitrary 
km1 (19) 

da=-3CJp, da==- ++ +$dl 

dk=&[!f+k+~(k-6)h- 

m(k+3;;@fi) dk_a_ (2m--iim--) &4], k>4; 
k 

ek = 2 Ldk-i+l 
i==k 
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The solution as t--t 0,~;._,O is constructed analogously. Therefore, the point E is a node 
If the solution (19) is separated into two parts 

Oz %+1 
.v 

J1 = E -tk, Jo= 
dl ix dZktk, O<t<r 

f;=o k=1 

it can be shown that 

J1 (C,, t) = Jl (- CE, t), Jo (CE, t) = Jo (-- cE~ t) 
dok (CE) = dok (- c,), &+I (CE) = - &+I (- CE) 

It is now necessary to find the relation between F and %. We introduce a new function 
T by setting t = T'. We obtain the equation 

E -$- = z - ru (T), u (.t) = C.&J, (C,, TO) -+ J, (C,, 6) 
7 

from (11) to determine Q = T(E). 
According to the Briot-Bouquet theorem /17/, it admits of a denumerable set of holomorphic 

solutions possessing the property T(%)+ 0 as 5-0 

~=%k~our%k=%x(ao,CE.%), O,<IEI<R(U,,CE) 

where a,,# 0 is arbitrary and R(u,,CE) is the radius of convergence of the series. 
It follows from (20) that if ~r(%, CE) is a solution, then there exists a solution Q(%, 

C_-) such that T*(%, C&= -T~(%, - CE). For fixed CE = a>0 and %> 0 we take ~~ = %~(a,, 
a, %), a,>0 for the integral curve (19). If c.E=fi<o and %< 0, then we set the integra 
curve (19) in correspondence with the solution 'cl = -En (Zo, -& %). _ Now if we set a0 =a,, 
fi=--a, then or = -r2. 0 <<I 51 <R. We hence obtain by using (111, (18), that 

fl=+$- %e+@(u~,a,%)], f%=+[+P+ 
nw2 (~0, a, %)] ; fl = f~, 0 g I% I < R 

Therefore, the passage from the integral curve (19) with the value CE = fi<O to the 
integral curve (19) with the value CE = a = -p>O through the point E in the (%,f) plane 
means that under the condition of continuity the appropriate integral curves f(%) of (8) 
analytically continue the axis %= 0 at the point (%=O,f= f (0)# 0) for f(O)# 0. Discontinuous 
solutions of (8) at % = 0 are not considered. In the (%,Q) plane the solution will behave 
as follows as c-+ 5,: 

Conversely, each triply continuously differentiable soltuion 0(E) in the neighbourhood 
of the point % = &, @ = 0 with d@l&> 0 is mapped into the corresponding neighbourhood of 
the point E by two branches of the integral curve (19) with C E=a>O and CE=f3=-a<O. 

If ~#-a and the first derivative (D'(5) is continuous, then the second derivative V(t), 
will undergo a discontinuity on passing the point E. Now if the integral curve (19) is set 
in correspondence with the function rl for C, >0 and F<O, then the second derivative 
Q"(6) will be negative for F,= Le. 

The solution of (2) in the neighbourhood of 6,. will behave as follows on passing the 
point E, : 

m-i ~=-.6”,i-6,.,+~cE,(~-~I,*)*+- urn a;’ (i - 5,,)3 + . . . 

The sign of the second derivative m"(c) depends on the sign of the arbitrary constants 

a0 =/= 0 and C,. 
We denote*the integral curve issuing from E for F>O and described by (19) with C,-0 

by \y,. Its behaviour in the neighbourhood of ce is described by the expansion (21) with a= 0. 
The curve P* s,,is introduced analogously. Corresponding to it in the neighbourhood t = 6,, is 
(22) with C,+=O. 

The singular point G (as wll as G,) is a saddle point. For F>O a single holomorphic 
curve 

m-2 
F+-&-+O(F'), F-f Qo, m>O 
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issues from it. 
We will have, respectively, in the (&,fi and (t,(o) planes 

The singular point Q (as well as QJ is a node. The integral curves in its neighbourhood 
are representable in the form 

y'=+-i+..., F-0 (24) 

As g+c#O in the plane (E,f), thefunction f(E) will behave as follows: 

If E>c, then C&>O. Otherwise &CC 0. In the (5, 0) plane this means that the 
point Q corresponds to a local extremum point of the analytic solution 

It follows from the relationships found that the constant C, in (24) should be kept as 
the axis F-0 is crossed. For instance, let the integral curve (24) be incident at the point 
Q with C,<O as F++O. To obtain the analytic solution (25) at the point i- & it is 
necessary to.go from Q. along the curve (24) with C,+= C, as P-.-O. Only such continuations 
of the integral curves incident at Q or at QI will be examined below, and the "internal"tran- 
sition from Q(Q.1 to QL (Ql will itself be denoted as 

Therefore, if.the integral curve 
Q (0.) -Q.(Q). 

Y(F) is incident for F> 0 at the singularity A for 

E > 0, then conditions (3) and (10) are satisfied, and (5) and (9) will be satisfied if the 
integral curve is incident in B for E<O. Passage of the points E orE,by the integral curve 

Y (E) means that its corresponding integral curve CP(E) 
points E and E, are reached along IF and Y& 

intersects the 6 axis. If the 
then 0((t) and CPU)/&* vanish simultaneously. 

Let us investigate the boundary value problem (2)-(S). The integral curve Yr* issuing 
from the point B with f< 0, will always be incident at a point C for O<m< co (Figs.l-3). 
Consequently, we consider the behaviour of the curve Yr described in a certain neighbourhood 
of the point B by the expansion (16). As E-+0 the integral curves 'PI will behave in the 

(6, 0) and (E, f) planes according to (17) and (9) for c#O, and assure satisfaction of 
condition (5). We will first assume that m> 1. The following inequalities hold at the 
point B 

dY dY 
+<+<+- ( i -i_<m<m 

It therefore follows that Y, issues from B located above PI and below E,. From the Cauchy 
existence and uniqueness theorem it follows /17/ that Yr(E)> Yp,(P) when FE(O, +oo). Both 
branches of the parabola R1 and R, are incident at E as F+ oo. The inequalities 

g<z$<o, +&$<o 

hold at the points (P,Ys)E 9. 
Their satisfaction means that Y,<Ys, for all F>O. The curve Y, does not coincide 

with YE since the latter is between RI and RI in the neighbourhood of E. By virtue of the 
Cauchy theorem Ys cannot emerge from the domain 9. As F-+0 it is incident at the point 
A. Consequently, all the integral curves issuing from A below Ys are incident at the point 
E. The curve Ye in the neighbourhood of the point G is located below Pp. It follows from 
the Cauchy theorem that Yp,>Ys for all F 6% (0, 00) and Ye will enter A as F+O. 

In the neighbourhood of %he point E the curve Yr is described by the expansion (19) with 
a certain fixed Cs = fl* (0. All the integral curves issuing from A and located between Ye 
and YE are incident at the point E. Among them we extract the curve Y, with C's = a, = -p,. 
We let K denote the curve comprised of the branches Yr and Y,. In the (E, j) plane integral 
curves in the class of twice continuously differentiable solutions of the problem (8)-(10) and 
issuing from points (c, 0), c<O with asymptotic form (9) passing through the axis E = 0 and 
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having the asymptotic form (10) as 5 ++ m, correspond to it. If the constant b> 0 is given, 
then a single curve is extracted from this set of integral curves f(E), to which the solutions 

0 

s & -=C5L f>O, c<@<m, c<o 
f (4) 

0 
(26) 

correspond in the (6,@) plane. 
The automatically satisfy conditions (3) and (5). As <-*_-a~ the first formula of (17) 

with 
c 

1s = - S[ L+‘]&!gL++ 
f w c (4 - 4 

cl 

will be valid, while for 6-+ +m we will have (15) with 

1 
,b’/m@‘-1)/m 3 

at + L 

The displacement thickness of the mixing layer is related to the value of the constant 

LA. Only one out of all the solutions (26), with L = 0, will satisfy condition (4). Since 
the curve K lies completely outsidethe parabola R, and the line '4 = -2F is within it, it 
follows from relationships (11) and (13) that 

-L$>ov -g<ov Ee(c,oo); -g>o, $!$>(I 
5E(- CT, + m) 

We will now assume that l/,<m,< 1 (Fig.2). As F-t- 08 the branches of the parabola 
R are incident at the point E,. When m = 1, it dissociates into two lines, Yn,= -2F and 
Yn,= -2F- 1. It follows from the inequality dYldF< -2, that holds at points of the line 
Y = -2F - 1, that Yy, is incident at E located below Y = -2F- 1 connecting B and E. The 
curve Yps from the point E is incident at the point A intersecting the line Y = -2F, which 
means a change in the sign of d2@ ldc2 from positive to negative for a value 5 = &, such 
that @ (5,) > 0. The first derivative of the solution is (D'(c)>O. The behaviour of the 
third derivative is given in (13). 

Thevalueof the constant k is found from the formula 

k=2'm")'P'"exp[~'S[~ +&-+F)x~%) 
0 

m 

X(y)=2-'m+"'amexp - ---s [& + &] dF - 
( 

m+2 

1 
1 

S[ m+l - + +-] dk’] 
n&B 

0 

For m=l/, (Fig.1) the solution Y= -2P-_ passes simultaneously through the points 

E. S, C, E,. Its part Y, describes the escape of a plane jet from an orifice /lS/. When 'Ia< 
m < 112, the curve Y1 is incident at E, then at Q. Its continuation emerges from Q, and 
is incident at C. For m = II1 we have Y==Y,= -3F/2-1 and I, is incident at G. For O(m< 
l/, the curve Y,is incident at Q.. Its continuation from the point Q is incident at C. 

Therefore, for m > V8 and a given quantity b>O the solution of problem (2)-(5) in 
the class of triply continuously differentiable functions exists and is unique. There are no 
solutions for O<mQ 'Ia. 

Let us consider problem (2)-(4) and (6). For m = 'In the curves YE and '&, coincide 
with the line Y = -2F- 1 (Fig.1). If O<m<Vp, then they are incident at the point C. 

For l/r<m<f the curve YE emerges from the point E below Y = -2F - 1. It follows from 
the inequality dYYldF< -2, that holds at points of'4 = -2F- 1, that Ye) -2F - 1 for all 
F E (0, a). Since the inequality dYldF> -2 holds at points of the line Y = -2F, then 
YE< -2F when FE (0,m). As p-+0 the integral curve 'ys is incident at A. The final 
solution is given by (26) wit&L = 0. Hence 

@((t)>% W(5)>0, @(5)<0, o< 6<m 

In the neighbourhood of 5 = 0 the solution is described by the expansion (21) (5, = 0, 
cc = 0) and satisfies conditions (4) and (6). condition (3) is satisfied. For 
O<m.<i the curve Yg! 

As c-+00 
is incident at the point C since it lies below, the exceptional 
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curve Y_4*. The latter issues from the point A, reaches the point E, and lies above the 
line Y = -2F. This results from the inequality dYIdF< -2 that holds at points of the 
line Y = -2F. 

For m = 1 the curves YE and YE, coincide with the line Y = -2F (Fig.2). In the 
physical plane the solution becomes trivial '0 = (ao*t)/2. For m> 1 (Fig.3) the curve YE 
is always incident at the point A and formula (26) yields the solution oftheproblem for 

5>0. The connection between the constants a, and b is given by the formula &-' = 
(m/~l)m/(m+l)~ll(m+l), where kr = x (Y.E) is a fixed constant obtained fromthe solutionof (2)- (4), and 
(6) for a, = 1 in (21). The'curve YL lies above YA* and is incident at Q+ as Fe- 0. 
Its continuation YYQEA issues from Q, passes E and is incident in A. We denote the union 
of the integral curves YE+ and Y~EA by YE. and, for convenience, also call it a curve 
since the points Q* and Q are identical. 

The curves 0((5) corresponding to YE, and satisfying the conditions of the boundary 
value problem (2)-(4) and (6) behaveas follows.As 6-+ +0 they are described by the expansion 
(22) with 5,. = 0, CE_= 0. When 5 reaches the value &>O the derivative d@/dc changes 
sign from negative to positive. In the neighbourhood of & the solution is described by 
the expansion (25) with C,<O, C< 0. Then it vanishes at the point 6, and satisfies (15) 
as g++m. From the group properties of (2), (81, the relations 

b%, L. .¶ = a&, c, x3 = (m + I)-’ 

follow. 
Here k,, &, & are fixed constants obtained from the solution of problem (2)-(4) and (6) 

when a,, = 1 in (22). If jr(E) denotes the solution of (8) corresponding to YE. for F<O, 
and f*(E) denotes the solution for P> 0, then the integral curve in the (6, 0,) plane will 
be described by the formulas 

It is seen from (27) that 6 is a monotonic function if we move along the curve YE, from 
E, to A and one value of @ aorresponds to each value of 6. The second derivative D"(E) 
is positive everywhere. The function a(c) inverse to (27) yields the solution of problem 
(2)-(4) and (6). 

Therefore, integral curve D(c) exist that correspond to both YE and YE, and yield a 
solution of the boundary value problem (2)-(4) and (6). Its non-uniqueness was first indicated 
for m= 3 in /13/. The problem is investigated numerically in /14/. 

The uniqueness can be ensured if the additional requirement (D'(O)> 0 /l/ is imposed 
on the solution since from (22) we have W(O)<q for the curve YE_ 

It follows from the above that for a given b>O the solution of problem (2)-(4) and 
(6) in the class of triply continuously differentiable functions exists and is unique for 
IIS < m < 1 . For m>l two solutions exist. One is characterized by a positive first 
derivative d@ldt > 0, 0 < c < 00. 
which d@/dc<O. Consequently, 

The other is the presence of a domain [0, &)% Q>O in 
a unique solution can be extracted by using an additional 

demand, namely, giving the sign of the derivative at zero /l/. There are no solutions for 
0 < m < If8 . 

We will now examine problem (2)-(4) and (7) briefly. For 0 < m G 11, it has no solution. 
For lII<m<l the curves issuing from A below V, are incident at E and then return back to 
A (Fig.2). They yield the solution of (2)-(4)and (7) withd@ldt>O. By using the selection 
of the constants C, a solution of the Lock problem formulated in /3/ can also be constructed. 
For l<m<Z solutions besides those mentioned above still exist that satisfy conditions 
(3), (4) and (7). This is part ofthecurves (but all for m=2 that emerge from A below '4, 
but above P, (Fig.3). They pass E, are then incident atQ-Q,.E,and return back to A through 
Q.-Q,E. For m>2 there are also those curves that, issuing from the point A, are incident 
atE then at Q-Q, and return back to A. For l<m<Z the curve Y2 continued by IQBA 
also yields a soltuion of the problem if q>O and its magnitude is in agreement with b. 
It describes a mixing layer that separates two parallel streams moving on different sides at 
different velocities. The solvabilityof (2)-(4)and (7) forarbitrary b> 0 and bl<O is not 
investigated here. 

We merely note that the curve '4, y ields the Blasius boundarylayersolution for m= i(Fig; 
2).In the neighbourhood ofG=Oit behaves as (23) with cg=O,6>0, and as (15) as 5-09. 

In conclusion, we consider the solution of (2) when m=o3 and 



312 

ul (i) -e+..., i. -. 00 
is required instead of (3). 

(2s’i 

Problem (21, (4), (5) and (28) arises in the theory of non-stationary separation /12/. 
We will show that its solution exists and is unique. The nature of the singular points of 
Eq.(12) does not alter for m=~. For c,=--l/l/z,E<O and c,=$/fl1, E,>o we obtain 

It hence follows that jlrfn for all 5. We find from the boundary condition for f (5) 
as ~-+co that d=l. From (26) with L= 0 we obtain the solution @= &- 1 /12/. It is 
unique since the curve '41. issuing from B with f<? is at once incident at A. The solutions 

@=-d-S exp v+i), d#O 

which do not satisfy the boundary conditions, correspond to it. 
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